A Summary of Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis

Adapted from ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI* Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Evidence Base and Standardized Methods of Imaging and Diagnostic Criteria and Appropriate Utilization, Parts 1 and 2

*The consensus report was written by a writing group of experts in cardiovascular imaging and amyloidosis assembled by the American Society of Nuclear Cardiology and endorsed by 8 societies including the American College of Cardiology, American Heart Association, American Society of Echocardiography, European Association of Nuclear Medicine, Heart Failure Society of America, International Society of Amyloidosis, Society of Cardiovascular Magnetic Resonance, and Society of Nuclear Medicine and Molecular Imaging.
Standardising the Diagnostic Multimodality Cardiac Amyloidosis Imaging Approach

The standardisation for using echocardiography, cardiac magnetic resonance (CMR), and radionuclide imaging in the evaluation of cardiac amyloidosis is an unmet need that could potentially increase diagnosis and improve quality of care and patient outcomes for this highly morbid, underdiagnosed disease.

Cardiac amyloidosis is a group of diseases that is life threatening and remains largely underrecognised or delayed in diagnosis due to many factors, and there is a lack of clear diagnostic imaging guidelines.

Despite an abundance of noninvasive cardiac imaging options for the evaluation of cardiac amyloidosis, there is a lack of consensus on their clinical utility, which is problematic considering the importance of early diagnosis.

In response, a group of experts in cardiovascular imaging and amyloidosis established an international consensus report to guide the appropriate clinical utilisation of imaging in cardiac amyloidosis.
No existing noninvasive tools can individually diagnose cardiac amyloidosis or confirm aetiologic subtype, which necessitates a multimodal cardiac imaging approach that includes:

Raising suspicion

- **Echocardiography** to assess structure and function, frequently used in patients with concerning cardiac symptoms
- **CMR** to provide tissue characterisation as well as high-resolution morphologic and functional assessment, while also offering differentiation of cardiac amyloidosis from other cardiomyopathies and potentially early detection of cardiac amyloidosis

Reaching a definitive diagnosis

- **Radionuclide (\(^{99m}\)Tc-PYP/\(^{99m}\)Tc-DPD/\(^{99m}\)Tc-HMDP) imaging** to assist in the noninvasive diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) with high sensitivity and specificity when combined with testing to rule out AL amyloidosis

Cardiac amyloidosis

Cardiac amyloidosis is a cardiomyopathy resulting from the myocardial accumulation of misfolded protein deposits, or amyloid fibrils.

Cardiac amyloidosis most commonly results from 1 of the following 2 protein precursors:

- Immunoglobulin light chain amyloid fibril protein (AL)—amyloid fibrils form from misfolded monoclonal immunoglobulin light chain protein produced by bone marrow plasma cells
- Transthyretin amyloid fibril protein (ATTR)—amyloid fibrils form from misfolded transthyretin (TTR), a serum transport protein for thyroid hormone and retinol that is synthesised primarily by the liver

Exclusion of a monoclonal process with serum/urine immunofixation and a serum free light chain (FLC) assay in all patients with suspected amyloidosis is critical.¹

¹Exclusion of a monoclonal process with serum/urine immunofixation and a serum free light chain (FLC) assay in all patients with suspected amyloidosis is critical.
Echocardiography as a Cardiac Imaging Modality

Basis of Evidence

Echocardiography plays a major role in the noninvasive diagnosis of cardiac amyloidosis due to its wide availability and capacity to assess **structure and function**.

Cardiac amyloidosis is suggested on echocardiography when:

- Morphological findings related to amyloid infiltration show increased left ventricular (LV) wall thickness (>1.2 cm) and increased LV mass in the absence of any other plausible causes of LV hypertrophy.
- Increased echogenicity of the myocardium (sparkling) is identified in conjunction with severely reduced longitudinal LV function.
- Any of the following echocardiographic findings are present:
 - Normal to small LV cavity size
 - Bialtrial enlargement and dysfunction
 - Left atrial (LA) and LA appendage stasis and thrombi
 - Thickened valves
- Results indicate impaired LA reservoir and pump functions, possibly resulting in the formation of atrial and atrial appendage thrombi.
- Presence of discordance of QRS voltage to echocardiographic LV wall thickness.
- On speckle-tracking echocardiography (STE), a pattern of reduced longitudinal shortening with preserved LV ejection fraction and radial shortening can be seen:
 - STE can differentiate cardiac amyloidosis from other causes of increased LV wall thickness.
 - STE can also refine the noninvasive recognition of disease by quantitating longitudinal systolic function.
 - A pattern of distribution of STE-derived longitudinal strain in which basal LV segments are severely impaired while apical segments are relatively spared is commonly observed in patients with cardiac amyloidosis.

Pros and Cons

Pros
- Portability, bedside availability, widespread availability
- Superior diastolic function assessment
- A critical component of the diagnostic evaluation and management of patients with cardiac amyloidosis

Cons
- Not sufficient to diagnose cardiac amyloidosis on its own
- Lacks tissue characterisation provided by cardiovascular magnetic resonance (CMR)
- Cannot distinguish immunoglobulin light chain amyloidosis (AL) from transthyretin amyloid cardiomyopathy (ATTR-CM), requiring evaluation to exclude AL and further imaging studies to definitively diagnose ATTR-CM
KEY RECOMMENDATIONS FOR THE ROLE OF ECHOCARDIOGRAPHY WHEN CARDIAC AMYLOIDOSIS IS SUSPECTED

- Perform comprehensive 2D echocardiography, including quantitative TDI and STE, in all patients with unexplained LV wall thickening and a clinical suspicion of cardiac amyloidosis
- Any echocardiographic abnormalities suggestive of cardiac amyloidosis should prompt further evaluation
- Combine echocardiographic parameters with electrocardiographic, clinical, biomarker, and other imaging findings to maximise diagnostic accuracy

CARDIAC AMYLOIDOSIS ON ECHOCARDIOGRAPHY

Characteristic Appearance

(a)-(d) 2D echocardiography. (a) (parasternal long axis) and (b) (parasternal short axis) demonstrate increased LV wall thickness with a sparkling texture of the myocardium (yellow arrows) in a patient with primary (AL) cardiac amyloidosis. Also, note the small pericardial effusion (white arrows), which is often seen in patients with cardiac amyloidosis. (c) (apical 4-chamber view) demonstrates increased biventricular wall thickness, biaatrial enlargement, and increased thickening of the interatrial septum (yellow arrow) and mitral valve leaflets (white arrow) in a patient with wild-type transthyretin cardiac amyloidosis. (d) Tissue Doppler imaging (TDI) tracing taken at the septal mitral annulus in a patient withATTR cardiac amyloidosis. The TDI tracings shows the “5-5-5” sign (s’ [systolic], e’ [early diastolic], and a’ [late (atrial) diastolic] tissue velocities are all <5 cm/s), which is seen in patients with more advanced cardiac amyloidosis. The dotted lines denote the 5 cm/s cut-off for systolic and diastolic tissue velocities. In addition to the decreased tissue velocities, isovolumic contraction and relaxation times (IVCT and IVRT, respectively) are increased and ejection time (ET) is decreased, findings also seen in patients with cardiac amyloidosis especially as the disease becomes more advanced.

Left Ventricular Longitudinal Strain Abnormalities

(a) (apical 4-chamber view), (b) (apical 2-chamber view), (c) (apical 3-chamber view) all show abnormal longitudinal strain in the basal and mid segments with relative preservation in the apical segments (purple and green curves, white arrows) in a patient with ATTRv cardiac amyloidosis. (d) shows the corresponding bull’s-eye map of the longitudinal strain pattern throughout the left ventricle with the “cherry-on-the-top” sign (red denotes normal longitudinal strain at the apex and pink/blue denotes abnormal longitudinal strain at the mid/basal left ventricle).

2D, 2-dimensional; ATTRv, variant ATTR.
Echocardiography as a Cardiac Imaging Modality, continued

STANDARDISED ACQUISITION, INTERPRETATION, AND REPORTING OF ECHOCARDIOGRAPHY FOR CARDIAC AMYLOIDOSIS

<table>
<thead>
<tr>
<th>Parameter for acquisition and reporting</th>
<th>Abnormal parameter</th>
<th>Notes</th>
<th>Recommendations for reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D, Colour, and Spectral Doppler Imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV wall thickness</td>
<td>Increased LV wall thickness (>1.2 cm) and increased relative wall thickness (>0.42)</td>
<td>Increased LV wall thickness relative to ECG QRS voltage is particularly suggestive</td>
<td>Required</td>
</tr>
<tr>
<td>Myocardial echogenicity</td>
<td>Increased echogenicity of the myocardium (sparkling, hyper-refractile “texture” of the myocardium)</td>
<td>Not highly specific (differential diagnosis includes ESRD or other infiltrative cardiomyopathies). However, this finding in conjunction with severely reduced longitudinal function of the LV is highly suggestive</td>
<td>Required</td>
</tr>
<tr>
<td>Atrial size and function</td>
<td>Atrial enlargement and dysfunction</td>
<td>Non-specific but important finding to support the diagnosis and potentially provide insight into risk for stroke or arterial embolism</td>
<td>Required</td>
</tr>
<tr>
<td>Interatrial septum and valves</td>
<td>Thickening of the interatrial septum and valves (>.5 cm)</td>
<td>Non-specific but suggestive of the diagnosis</td>
<td>Required</td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>Pericardial effusion</td>
<td>Non-specific, but when coupled with other echo signs is suggestive of the diagnosis</td>
<td>Required</td>
</tr>
<tr>
<td>Diastolic function</td>
<td>Grade 2 or worse diastolic dysfunction with high E/A ratio (>1.5) and reduced E deceleration time (<150 ms)</td>
<td>Doppler diastolic function is helpful in determining prognosis. Severely reduced A wave velocity can be due to LA failure, which can be helpful in determining risk of stroke</td>
<td>Required</td>
</tr>
<tr>
<td>Estimated PA systolic and right atrial pressure</td>
<td>Increased pressures (>35 mm Hg for PA, ≥10 mm Hg for RA)</td>
<td>These are important parameters to estimate volume status and optimise diuretic dosing</td>
<td>Required</td>
</tr>
<tr>
<td>Tissue Doppler Imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue Doppler velocities</td>
<td>Reduced tissue Doppler s’, e’, and a’ velocities (all <5 cm/s)</td>
<td>If present, the “5-5-5” sign (all TDI velocities <5 cm/s) can be useful and is typically highly suggestive of the diagnosis but may not be sensitive for the diagnosis in early forms of the disease</td>
<td>Required</td>
</tr>
</tbody>
</table>
Parameter for acquisition and reporting

<table>
<thead>
<tr>
<th>Abnormal parameter</th>
<th>Notes</th>
<th>Recommendations for reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain Imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal LV strain</td>
<td>Decreased global longitudinal LV strain (absolute value less than -15%)</td>
<td>2D and STE shows characteristic appearance of myocardial deformation in patients with cardiac amyloidosis</td>
</tr>
<tr>
<td>Longitudinal LV strain bull’s-eye map</td>
<td>“Cherry-on-the-top” sign on STE longitudinal strain bull’s-eye map (preservation of apical longitudinal strain with severely abnormal basal and mid-LV longitudinal strain)</td>
<td>Characteristic bull’s-eye pattern is likely the most specific sign to rule in the diagnosis of cardiac amyloidosis (but still does not differentiate ATTR vs AL amyloidosis)</td>
</tr>
</tbody>
</table>

REPORTING OF ECHOCARDIOGRAPHY FINDINGS IN CARDIAC AMYLOIDOSIS

An overall interpretation of the echo findings into categories of:

- **Not suggestive:** Normal LV wall thickness, normal LV mass, normal atrial size, septal or lateral tissue Doppler e’ velocity >10 cm/s
- **Strongly suggestive:** Increased LV wall thickness, increased LV mass, typical LV longitudinal strain pattern, mitral annular TDI <5 cm/sec, biatrial enlargement, small A wave in sinus rhythm, small pericardial and/or pleural effusions
- **Equivocal:** Findings not described above

Interpret the echo results in the context of prior evaluation

Provide follow-up recommendations:

Strongly suggestive echocardiographic findings cannot distinguish AL from TTR cardiac amyloidosis

Endomyocardial biopsy (EMB) is not always indicated in patients with strongly suggestive echo findings. Please see “Expert Consensus Recommendations for Diagnosis of Cardiac Amyloidosis” on back page for indications for endomyocardial biopsy

Consider evaluation (1) to exclude AL amyloidosis, evaluate for plasma cell dyscrasia (serum and urine immunofixation, serum free light chain (FLC) assay and (2) to exclude ATTR cardiac amyloidosis, consider imaging with 99mTc-PYP/DPD/HMDP

2D, 2-dimensional; 99mTc-DPD, 99mtechnetium-labelled 3,3-diphosphono-1,2-propanodicarboxylic acid; 99mTc-HMDP, 99mtechnetium-labelled hydroxymethylene diphosphonate; 99mTc-PYP, 99mtechnetium-labelled pyrophosphate; A, late (atrial) mitral inflow velocity; AL, immunoglobulin light chain amyloid fibril protein; ATTR, transthyretin amyloid fibril protein; E, early mitral inflow velocity; E/A, ratio of early to late (atrial) mitral inflow velocities; ECG, electrocardiogram; ESRD, end-stage renal disease; LV, left ventricular; PA, pulmonary artery; RA, right atrium; STE, speckle-tracking echocardiography; TDI, tissue Doppler imaging; TTR, transthyretin.
Cardiac Magnetic Resonance
Cardiac Magnetic Resonance (CMR) as a Cardiac Imaging Modality for Cardiac Amyloidosis

BASIS OF EVIDENCE

CMR may raise suspicion of disease in 2 scenarios:

1. Differentiation between cardiac amyloidosis and other cardiomyopathic conditions with increased wall thickening

2. Detection of early cardiac involvement in patients presenting with symptoms of systemic amyloidosis

In addition to high-resolution morphologic and functional assessment, CMR is able to provide tissue characterisation.

Cardiac amyloidosis is suggested on CMR when the following are observed:

- Functional and morphologic assessment:
 - Increased left ventricular (LV) wall thickness, increased LV mass, biatrial enlargement, pericardial effusion, low stroke volume index, increased atrial volume, reduced atrial function, and reduced LV function in advanced cases

- Tissue characterisation:
 - Late gadolinium enhancement (LGE) assessment:
 - Abnormal diffuse or global LGE patterns, including subendocardial LGE, patchy LGE, difficulty in achieving myocardial nulling over a range of inversion times, and dark blood pool signal
 - Abnormal myocardial signal suppression pattern
 - T1 mapping post-contrast: Extracellular volume >0.40

CMR PROS AND CONS

Pros

- CMR may be advantageous in the following scenarios if echocardiographic acoustic windows are poor:
 - To characterise the right ventricle
 - To characterise tissue based on the contrast-enhanced patterns of myocardial infiltration
 - To precisely quantify cardiac chamber volumes and ventricular mass

Cons

- Cannot distinguish immunoglobulin light chain amyloidosis (AL) from transthyretin amyloid cardiomyopathy (ATTR-CM), requiring evaluation to exclude AL and further imaging studies to definitively diagnose ATTR-CM

- CMR with LGE may be contraindicated in patients with ATTR-CM who have concurrent renal dysfunction

- Restricted to specialty locations and requires specialty equipment and expertise

- Contraindicated with some pacemakers and other implanted hardware

- Long test compared with other imaging modalities

- Some patients may experience claustrophobia
KEY RECOMMENDATIONS FOR THE ROLE OF CMR WHEN CARDIAC AMYLOIDOSIS IS SUSPECTED

- Comprehensive CMR-based evaluation of cardiac structure, function, and myocardial tissue characterisation
- In patients with biopsy-proven systemic amyloidosis, typical CMR findings should be combined with structural findings of increased wall thickness and myocardial mass to diagnose cardiac involvement
 - Typical CMR features should prompt further evaluation for cardiac amyloidosis in the absence of documented systemic amyloidosis
- CMR does not definitively distinguish AL from ATTR-CM
- To maximise diagnostic accuracy, CMR parameters should be combined with electrocardiographic, clinical, biomarker, and other imaging findings

CARDIAC AMYLOIDOSIS ON CMR

Characteristic Appearance

Two patients [upper and lower row, (a) and (b)] with cardiac amyloidosis: similar mass (cine), but significantly different amyloid burden, with the patient at the bottom (b) showing a significant higher amyloid burden (higher native T1, higher extracellular volume [ECV], transmural LGE) and lower myocardial resting perfusion (also, after adjusting for ECV expansion). (c) Inversion scout images in two patients, upper row amyloid, lower row non-amyloid control. These images show a distinct pattern of myocardial and blood pool nulling. In the non-amyloid subject, the blood pool nulls prior to myocardium; in contrast, in the subject with cardiac amyloidosis, the myocardium nulls prior to the blood pool.
<table>
<thead>
<tr>
<th>Parameter for acquisition and reporting</th>
<th>Criteria</th>
<th>Notes</th>
<th>Recommendations for reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV function and morphology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV function</td>
<td>Biventricular long-axis impairment with relative apical functional sparing</td>
<td>Although LV ejection fraction is typically preserved in cardiac amyloidosis, a reduced LV ejection fraction may be seen in advanced cases</td>
<td>Required</td>
</tr>
<tr>
<td>LV wall thickness</td>
<td>Increased LV wall thickness: > laboratory ULN for sex on SSFP cine CMR and increased relative wall thickness >0.42 cm</td>
<td>Increased LV wall thickness is suggestive in the presence of normal or low QRS voltage on ECG and/or concomitant increased right ventricular wall thickness While increased LV wall thickness is typically concentric, it can be asymmetric in ATTR cardiac amyloidosis</td>
<td>Required</td>
</tr>
<tr>
<td>Stroke volume index</td>
<td>LV stroke volume index (<35 mL/m²)</td>
<td>A low stroke volume index is non-specific but suggestive of cardiac amyloidosis</td>
<td>Required</td>
</tr>
<tr>
<td>LV mass</td>
<td>LV mass ≥91 g/m² for men and ≥78 g/m² for women (with papillary muscle included as part of LV mass measurement)</td>
<td>To quantify myocardial and amyloid mass</td>
<td>Required</td>
</tr>
<tr>
<td>Atrial size and function (based on Simpson’s method)</td>
<td>Increased left atrial volume >163 mL for men and >131 mL for women Increased right atrial volume >85 mL/m² Reduced atrial function: <29% for men and <35% for women</td>
<td>Non-specific but important finding to support the diagnosis and potentially provide insight into risk for stroke or arterial embolism</td>
<td>Required</td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>Pericardial effusion</td>
<td>Non-specific, but when coupled with other CMR signs is suggestive of the diagnosis, especially in the setting of normal LV ejection fraction</td>
<td>Required</td>
</tr>
<tr>
<td>Amyloid Imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGE imaging</td>
<td>Abnormal LGE pattern • Diffuse LGE • Subendocardial LGE • Patchy LGE • Difficulty in achieving myocardial nulling over a range of inversion times • Dark blood pool signal</td>
<td>Standard mag-IR LGE imaging is not recommended given difficulty in selecting the optimal inversion time (TI). Phase-sensitive reconstruction is preferred Data acquisition should be obtained in every other RR interval Quantification of LGE is challenging in amyloidosis and is not recommended for routine clinical practice</td>
<td>Required</td>
</tr>
</tbody>
</table>
An overall interpretation of the CMR findings into categories of:

- **Not suggestive:** Normal LV wall thickness, normal LV mass, no ventricular LGE, normal atrial size
- **Strongly suggestive:** Increase LV wall thickness, increased LV mass, biatrial enlargement, typical diffuse or global LGE pattern, difficulty achieving myocardial nulling, significantly increased ECV (>0.40), small pericardial and/or pleural effusions
- **Equivocal:** Findings not described above

Interpret the CMR results in the context of prior evaluation

Provide follow-up recommendations:

Strongly suggestive CMR findings cannot distinguish AL from ATTR cardiac amyloidosis

Endomyocardial biopsy is frequently unnecessary in patients with strongly suggestive CMR findings and histologically defined systemic amyloidosis or diagnostic 99mTc-PYP/DPD/HMDP imaging

Consider evaluation (1) to exclude AL amyloidosis, evaluate for plasma cell dyscrasia (serum and urine immunofixation, serum FLC assay) and (2) to exclude ATTR cardiac amyloidosis, consider imaging with 99mTc-PYP/DPD/HMDP

REPORTING OF CMR FINDINGS IN CARDIAC AMYLOIDOSIS

<table>
<thead>
<tr>
<th>Parameter for acquisition and reporting</th>
<th>Criteria</th>
<th>Notes</th>
<th>Recommendations for reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial signal suppression pattern</td>
<td>Abnormal myocardial signal suppression pattern. Myocardium nulls before blood pool on Look locker, Cine IR, or TI scout sequences.</td>
<td></td>
<td>Recommended</td>
</tr>
<tr>
<td>Amyloid quantitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native T1 mapping (pre-contrast)</td>
<td>Abnormal T1 mapping (criteria may vary based on the sequence used [MOLLI, ShMOLLI] and the field strength of the magnet).</td>
<td>Assess interstitial amyloid accumulation without gadolinium. Reference range should be based on a site's local calibrated values on specific field strengths.</td>
<td>Recommended</td>
</tr>
<tr>
<td>T1 mapping post-contrast (ECV estimation)</td>
<td>ECV >0.40 is highly suggestive of cardiac amyloidosis.</td>
<td>Assess expansion of ECV from interstitial amyloid accumulation. A. 1 pre- and 1 post-contrast measurement (15-minute post-contrast injection). B. 1 pre- and 3 post-contrast measurements (5-, 15-, and 25-minutes post-contrast injection).</td>
<td>A. Recommended; B. Optional</td>
</tr>
</tbody>
</table>

T2 mapping is currently not part of the standard clinical amyloidosis imaging protocol.

99mTc-DPD, 99mTc, technetium-labelled 3,3-diphosphono-1,2-propanodicarboxylic acid; 99mTc-HMDP, 99mTc, technetium-labelled hydroxymethylene diphosphonate; 99mTc-PYP, 99mTc, technetium-labelled pyrophosphate; AL, immunoglobulin light chain amyloid fibril protein; ATTR, transthyretin amyloid fibril protein; EF, ejection fraction; ECV, extracellular volume; FLC, free light chain; IR, inversion recovery; LGE, late gadolinium enhancement; MOLLI, modified Look-Locker inversion recovery; SSFP, steady state free precession; ShMOLLI, shortened modified Look-Locker inversion recovery; ULN, upper limit of normal.
Radionuclide Imaging

(99mTc-PYP/DPD/HMDP)

99mTc-DPD, 99mTc-technetium-labelled 3,3-diphosphono-1,2-propanodicarboxylic acid; 99mTc-HMDP, 99mTc-technetium-labelled hydroxymethylene diphosphonate; 99mTc-PYP, 99mTc-technetium-labelled pyrophosphate.
Radionuclide Imaging as a Diagnostic Modality*

BASIS OF EVIDENCE

Radionuclide imaging with technetium-labelled bone avid radiotracers can definitively and noninvasively diagnose transthyretin amyloid cardiomyopathy (ATTR-CM) once immunoglobulin light chain amyloid fibril protein (AL) is ruled out.†

• Scintigraphy with 99mTc-PYP/DPD/HMDP provides a unique myocardial uptake pattern in amyloid§
• Studies comparing 99mTc-PYP/DPD/HMDP scintigraphy with endomyocardial biopsy (EMB) found that bone radiotracers have avidity for ATTR-CM deposits, whereas avidity for AL cardiac amyloid deposits is minimal or absent†
• A variety of bone-avid radiotracers like 99mTc-PYP/DPD/HMDP compounds can diagnose ATTR-CM§
 - A multicentre international study demonstrated 99% sensitivity for ATTR-CM (visual grade 1-3). A separate analysis within the study demonstrated 100% specificity for visual grade 2 or 3 with concurrent testing to rule out AL§
 - 99mTc-DPD/HMDP may also detect extracardiac (skeletal muscle and lung) amyloid infiltration†
• Cardiac scintigraphy with bone-avid radiotracers could reliably differentiate cardiac amyloidosis from other entities that mimic cardiac amyloidosis, such as hypertrophic cardiomyopathy†

Pros

• Determines amyloid type—critical information that complements cardiac structural and functional analysis
• Offers a definitive diagnosis with high sensitivity and specificity in select patients in whom AL has been ruled out†
• Whole-body imaging can occur concurrently, which can identify potential multiorgan involvement

Cons

• Not 100% specific for patients with evidence of a plasma cell dyscrasia
• In some mutations, it is possible for patients with hereditary ATTR-CM (hATTR-CM) to have negative radionuclide imaging findings

99mTc-PYP/DPD/HMDP Radionuclide Imaging Pros and Cons

99mTc-PYP is not FDA-approved for the diagnosis of ATTR-CM. Please consult individual labelling for risks.

†A histological diagnosis is needed for patients with evidence of a plasma cell dyscrasia, because the presence of low-grade uptake on a 99mTc-PYP/DPD/HMDP scan is not 100% specific for ATTR-CM, and substantial uptake (Grade 2 or 3) has been reported in more than 20% of patients with AL cardiac amyloidosis. Excluding monoclonal process with serum/urine immunofixation and a serum FLC assay in all patients with suspected amyloidosis is recommended.§

‡Multicentre study conducted to determine the diagnostic value of bone scintigraphy in ATTR-CM patients. Of 1217 evaluable patients, 374 underwent EMB, and 843 were diagnosed with presence and type or absence of amyloid on basis of extracardiac histology combined with echocardiography with or without cardiac magnetic resonance (CMR).

§Rule out AL: testing for presence of monoclonal protein via serum and urine immunofixation + serum free light chain assay.

99mTc-DPD, 99mTc-labelled 3,3-diphosphono-1,2-propanodicarboxylic acid; 99mTc-HMDP, 99mTc-labelled hydroxymethylene diphosphonate; 99mTc-PYP, 99mTc-labelled pyrophosphate.
KEY RECOMMENDATIONS FOR THE ROLE OF RADIONUCLIDE IMAGING WHEN CARDIAC AMYLOIDOSIS IS SUSPECTED

• Myocardial imaging with 99mTc-PYP/DPD/HMDP is highly sensitive and specific to diagnose ATTR-CM and may aid in its early detection
• Myocardial uptake of 99mTc-PYP/DPD/HMDP of Grade ≥2 is diagnostic of ATTR-CM and removes the need for EMB when AL is ruled out
• Consider cardiac 99mTc-PYP/DPD/HMDP scintigraphy in all patients with unexplained increased LV wall thickness, heart failure with preserved ejection fraction, familial amyloid polyneuropathy (FAP), family history of amyloidosis, degenerative aortic stenosis with low-flow low gradient in the elderly, and a history of bilateral carpal tunnel syndrome

If cardiac amyloidosis is suspected based on clinical, echocardiographic, or CMR findings, then:

Analyse blood and urine for evidence of a monoclonal protein and

Consider 99mTc-PYP/DPD/HMDP cardiac scintigraphy if ATTR-CM is suspected and AL has been ruled out

CARDIAC AMYLOIDOSIS ON RADIONUCLIDE IMAGING

Characteristic Appearance

Anterior planar chest views one hour after injection of 99mTc-PYP a patient with Grade 3 (a), and Grade 0 (b) 99mTc-PYP uptake. On the right are the corresponding H/CL (heart/contralateral lung) lung-ratio methodology with measurement of mean counts per pixel for target (heart) and background (contralateral chest). As shown in this figure, the ROI’s (region of interest) should be positioned to minimise overlap with sternal or focal rib uptake and maximise coverage of the heart without including adjacent lung.
RECOMMENDATIONS FOR INTERPRETATION OF 99mTc-PYP/DPD/HMDP FOR CARDIAC AMYLOIDOSIS

Step 1: Visual interpretation to diagnose ATTR cardiac amyloidosis

- Evaluate planar and SPECT images to confirm diffuse radiotracer uptake in the myocardium.
- Differentiate myocardial radiotracer uptake from residual blood pool activity, focal myocardial infarct, and overlapping bone (e.g., from rib hot spots from fractures). If excess blood-pool activity is noted on the 1-hour SPECT images, recommend repeat SPECT imaging at 3 hours.
- If myocardial tracer uptake is visually present on SPECT, proceed to step 2, semi-quantitative grading to distinguish ATTR from AL cardiac amyloidosis using either the 1- or 3-hour approach.

Step 2: Semi-quantitative grading to distinguish AL from ATTR cardiac amyloidosis (1- or 3-hour approach)

1-Hour Approach (validated for 99mTc-PYP):

- An elliptical/circular ROI should be drawn over the heart on the anterior planar images with care to avoid sternal overlap and with size adjusted to maximise coverage of the heart without inclusion of adjacent lung. This ROI (same size) should be mirrored over the contralateral chest to adjust for background and rib uptake (See CARDIAC AMYLOIDOSIS ON RADIONUCLIDE IMAGING on page 19).
- A H/CL ratio is calculated as the fraction of heart ROI mean counts to contralateral chest ROI mean counts.
- H/CL ratios of ≥ 1.5 at one hour can accurately identify ATTR cardiac amyloidosis if systemic AL amyloidosis is excluded.

3-Hour Approach:

- Examine 3-hour images for relative tracer uptake in the myocardium relative to ribs and grade using the following scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0</td>
<td>No myocardial uptake and normal bone uptake</td>
</tr>
<tr>
<td>Grade 1</td>
<td>Myocardial uptake less than rib uptake</td>
</tr>
<tr>
<td>Grade 2</td>
<td>Myocardial uptake equal to rib uptake</td>
</tr>
<tr>
<td>Grade 3</td>
<td>Myocardial uptake greater than rib uptake with mild/absent rib uptake</td>
</tr>
</tbody>
</table>

Grade 2 or Grade 3 uptake is consistent with ATTR cardiac amyloidosis if a monoclonal plasma cell dyscrasia is excluded, as this degree of uptake can be seen in $>20\%$ of patients with AL cardiac amyloidosis. Grade 0 and Grade 1 uptake may be observed in AL cardiac amyloidosis and warrants further evaluation to exclude AL amyloidosis. The writing group would like to emphasise the importance of excluding a monoclonal process with serum/urine immunofixation and a serum free light-chains assay in all patients with suspected amyloidosis.
RECOMMENDATIONS FOR STANDARDISED REPORTING OF 99mTc-PYP/DPD/HMDP IMAGING FOR CARDIAC AMYLOIDOSIS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td>Patient name, age, sex, reason for the test, date of study, prior imaging procedures, biopsy results if available (Required)</td>
</tr>
<tr>
<td>Methods</td>
<td>Imaging technique, radiotracer dose and mode of administration, interval between injection and scan, scan technique (planar and SPECT) (Required)</td>
</tr>
<tr>
<td>Findings</td>
<td>Image quality, Visual scan interpretation (Required), Semi-quantitative interpretation in relation to rib uptake (Required), Quantitative findings H/CL lung ratio (Optional; recommended for positive scans)</td>
</tr>
<tr>
<td>Ancillary findings</td>
<td>Whole-body imaging if planar whole-body images are acquired (Optional), Interpret CT for attenuation correction if SPECT/CT scanners are used (Recommended)</td>
</tr>
</tbody>
</table>
| **Conclusions** | 1. An overall interpretation of the findings into categories of 1) not suggestive of ATTR cardiac amyloidosis; 2) equivocal for ATTR cardiac amyloidosis or 3) strongly suggestive of ATTR cardiac amyloidosis
 a. **Not suggestive:** A semi-quantitative visual grade of 0
 b. **Equivocal:** If myocardial uptake of 99mTc-PYP/DPD/HMDP is visually confirmed, a semi-quantitative visual grade of 1 or H/CL ratio 1-1.5
 c. **Strongly suggestive:** If myocardial uptake of 99mTc-PYP/DPD/HMDP is visually confirmed, a semi-quantitative visual grade of 2 or 3
2. Interpret the results in the context of prior cardiac evaluation and evaluation for systemic AL amyloidosis using serum-free light chain assay, serum immunofixation, and urine immunofixation studies. A 99mTc-PYP/DPD/HMDP scan does not exclude AL cardiac amyloidosis. Therefore:
 a. If echo/CMR are strongly suggestive of cardiac amyloidosis, and 99mTc-PYP/DPD/HMDP is negative or equivocal, consider further evaluation for AL amyloidosis by serum FLCs, serum, and urine immunofixation and referral to a haematologist or an amyloidosis expert. EMB may be considered
 b. A positive 99mTc-PYP/DPD/HMDP scan with abnormal FLC evaluation, consider referral to a haematologist or an amyloidosis expert |

99mTc-DPD, 99mTc-HMDP, 99mTc-PYP, 3,3-diphosphono-1,2-propanodicarboxylic acid; 99mTc-AL, technetium-labelled hydroxymethylene diphosphonate; 99mTc-PYP, technetium-labelled pyrophosphate; AL, immunoglobulin light chain amyloid fibril protein; ATTR, transthyretin amyloid fibril protein; CT, computed tomography; EMB, endomyocardial biopsy; FLC, free light chain; H/CL, heart to contralateral lung; ROI, region of interest; SPECT, single-photon emission computed tomography.

OTHER RADIONUCLIDE IMAGING MODALITIES

Other radionuclide imaging modalities may also play a role in the noninvasive diagnosis of cardiac amyloidosis, including:

- Targeted amyloid binding 18F-positron emission tomography (PET) tracers, which seem to bind to both ATTR and AL and are highly specific to image amyloid deposits
- Investigational PET tracers include C-Pittsburgh compound B (11C-PIB) and the fluorine-labelled compounds: 18F-florbetapir, 18F-florbetaben, and 18F-flutemetamol
- Another established tracer for imaging myocardial denervation, 123I-meta-iodobenzylguanidine (mIBG), which has been used to image myocardial denervation in familial ATTR cardiac amyloidosis
EMB is a known diagnostic tool for cardiac amyloidosis. Congo red staining with apple-green birefringence under polarised light is indicative of cardiac amyloidosis.1,2 Still, EMB comes with limitations and risks, necessitating a multimodality approach using noninvasive imaging techniques, such as echocardiography, cardiac magnetic resonance, and radionuclide imaging, all of which have evolved as the principal means for cardiac amyloidosis diagnosis and disease management.1

EMB PROS AND CONS1,2

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Considered the gold standard for the diagnosis of cardiac amyloidosis</td>
<td>• Invasive</td>
</tr>
<tr>
<td>• 100% accuracy in the detection of amyloid deposits</td>
<td>• Risk for complications</td>
</tr>
<tr>
<td></td>
<td>• Requires specialised location and pathologic expertise</td>
</tr>
<tr>
<td></td>
<td>• Unable to identify whole-heart amyloid burden, evaluate systemic disease burden, or assess response to therapy</td>
</tr>
</tbody>
</table>
No existing noninvasive diagnostic tools can individually
diagnose cardiac amyloidosis AND identify aetiologic
subtype, necessitating a multimodality cardiac imaging
approach to identify this underdiagnosed group of
diseases, which may pave the way for future noninvasive
diagnostic guidelines for cardiac amyloidosis.¹
Expert Consensus Recommendations for Diagnosis of Cardiac Amyloidosis

Criteria for Diagnosis

Histological Diagnosis of Cardiac Amyloidosis: Endomyocardial Biopsy

1. Endomyocardial biopsy positive for cardiac amyloidosis with Congo red staining with apple-green birefringence under polarised light; typing by immunohistochemistry and/or mass spectrometry at specialised centres

<table>
<thead>
<tr>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL, ATTR, Other subtypes</td>
</tr>
</tbody>
</table>

Histological Diagnosis of Cardiac Amyloidosis: Extracardiac Biopsy

1. ATTR cardiac amyloidosis is diagnosed when below criteria are met:
 a. Extracardiac biopsy proven ATTR amyloidosis **AND**
 b. Typical cardiac imaging features (as defined below)

<table>
<thead>
<tr>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR</td>
</tr>
</tbody>
</table>

2. AL cardiac amyloidosis is diagnosed when below criteria are met:
 a. Extracardiac biopsy proven AL amyloidosis **AND**
 b. Typical cardiac imaging features (as defined below) **OR**
 c. Abnormal cardiac biomarkers: abnormal age-adjusted NT-pro BNP or abnormal Troponin T/I/Hs-Troponin with all other causes for these changes excluded

<table>
<thead>
<tr>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
</tr>
</tbody>
</table>

Clinical Diagnosis of ATTR Cardiac Amyloidosis:

1. ATTR cardiac amyloidosis is diagnosed when below criteria are met:
 a.
 b. Typical cardiac imaging features (as defined below)

<table>
<thead>
<tr>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR</td>
</tr>
</tbody>
</table>

Typical Imaging Features of Cardiac Amyloidosis

Typical cardiac echo or CMR or PET features: ANY of the below imaging features with all other causes for these cardiac manifestations, including hypertension, reasonably excluded

1. Echo
 a. LV wall thickness >12 mm
 b. Relative apical sparing of global LS ratio (average of apical LS/average of combined mid+basal LS >1)
 c. Grade 2 diastolic dysfunction

<table>
<thead>
<tr>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR/AL</td>
</tr>
</tbody>
</table>

2. CMR
 a. LV wall thickness >ULN for sex on SSFP cine CMR
 b. Global ECV >0.40
 c. Diffuse LGE
 d. Abnormal gadolinium kinetics typical for amyloidosis, myocardial nulling prior to blood pool nulling

<table>
<thead>
<tr>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR/AL</td>
</tr>
</tbody>
</table>

3. PET:
 a. Target to background (LV myocardium to blood pool) ratio >1.5
 b. Retention index >0.030 min

<table>
<thead>
<tr>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR/AL</td>
</tr>
</tbody>
</table>

These consensus recommendations were based on moderate-quality evidence from one or more well-designed, well-executed nonrandomised studies, observational studies, registries, or meta-analyses of such studies. The PET recommendations were based on more limited data.

*Endomyocardial biopsy should be considered in cases of equivocal

**Off-label use of FDA-approved commercial products

†Flutemetamol not studied systematically in the heart. "C-Pittsburgh B compound is not FDA approved and not available to sites without a cyclotron in proximity.

\(^{99m} \text{Tc-PYP} \), technetium-

References:

The health information contained in this piece is provided for educational purposes only. Content adapted and tables and images reproduced with permission from ASNC. ©2019 American Society of Nuclear Cardiology.

© 2020 Pfizer Inc. All rights reserved. January 2020 PP-RID-GLB-0679